C moving average algorithm


Em estatísticas, uma média móvel simples é um algoritmo que calcula a média não ponderada das últimas n amostras. O parâmetro n é muitas vezes chamado de tamanho de janela, porque o algoritmo pode ser pensado como uma janela que desliza sobre os pontos de dados. Usando uma formulação recursiva do algoritmo, o número de operações necessário por amostra é reduzido a uma adição, uma subtração e uma divisão. Uma vez que a formulação é independente do tamanho da janela n. A complexidade de tempo de execução é O (1). I. e. constante. A fórmula recursiva da média móvel não ponderada é, onde avg é a média móvel e x representa um ponto de dados. Assim, sempre que a janela desliza para a direita, um ponto de dados, a cauda, ​​desce e um ponto de dados, a cabeça, move-se. Implementação Uma implementação da média móvel simples tem que levar em conta o seguinte: Algoritmo de inicialização Contanto que A janela não está totalmente preenchida com valores, a fórmula recursiva falha. Armazenamento O acesso ao elemento da cauda é necessário, o que, dependendo da implementação, requer um armazenamento de n elementos. Minha implementação usa a fórmula apresentada quando a janela é totalmente preenchida com valores e, de outra forma, muda para a fórmula, que atualiza a média recalculando a soma dos elementos anteriores. Observe que isso pode levar a instabilidades numéricas devido à aritmética de ponto flutuante. No que diz respeito ao consumo de memória, a implementação usa iteradores para acompanhar os elementos da cabeça e da cauda. Isso leva a uma implementação com requisitos de memória constante independentes do tamanho da janela. Aqui está o procedimento de atualização que desliza a janela para a direita. No. NET a maioria das coleções invalidate seus enumeradores quando a coleção subjacente é modificada. A implementação, no entanto, depende de enumeradores válidos. Especialmente em aplicativos baseados em fluxo contínuo, as necessidades de coleta subjacentes são modificadas quando um novo elemento chega. Uma maneira de lidar com isso é criar uma coleção de tamanho fixo circular simples de tamanho n1 que nunca invalida seus iteradores e, alternativamente, adicionar um elemento e chamar Shift. Eu gostaria de descobrir como realmente implementar isso, como a função de teste é muito confuso para me8230 Eu preciso converter dados para matriz, em seguida, execute SMA sma novo SMA (20, matriz) para um período de 20 SMA Como faço para lidar Shift () É necessário implementar construtores. (Desculpe pela confusão). Não você precisa don8217t converter seus dados em uma matriz, desde que seus dados implementa IEnumerable1 eo tipo enumerado é duplo. No que diz respeito à sua mensagem privada está em causa, você precisa converter o DataRow para algo que é enumerável de valores duplos. Sua abordagem funciona. Shift, desliza a janela uma posição para a esquerda. Para um conjunto de dados de dizer 40 valores e um período de 20 SMA você tem 21 posições a janela se encaixa em (40 8211 20 1). Cada vez que você chama Shift () a janela é movida para a esquerda por uma posição e Average () retorna o SMA para a posição atual da janela. Ou seja, a média não ponderada de todos os valores dentro da janela. Além disso, minha implementação permite calcular o SMA mesmo se a janela não estiver totalmente preenchida no início. Então, em essência Espero que isso ajude. Quaisquer outras perguntas AVISO DE DIREITOS DE AUTOR Christoph Heindl e cheind. wordpress, 2009-2017. O uso não autorizado e / ou a duplicação deste material sem permissão expressa e por escrito deste autor de blogs e / ou proprietário é estritamente proibido. Excertos e links podem ser usados, desde que crédito completo e claro seja dado a Christoph Heindl e cheind. wordpress com direção apropriada e específica para o conteúdo original. Mensagens recentes Uma análise mais detalhada do algoritmo de média móvel CODAS avançado A média móvel versátil no algoritmo CODAS avançado filtra o ruído da forma de onda, os extratos significam e elimina a deriva da linha de base. A média móvel é uma técnica matemática simples usada principalmente para eliminar aberrações e revelar a tendência real em uma coleção de pontos de dados. Você pode estar familiarizado com ele a partir da média de dados ruidosos em uma experiência de física de caloiro, ou de rastrear o valor de um investimento. Você pode não saber que a média móvel é também um protótipo do filtro de resposta de impulso finito, o tipo mais comum de filtro usado em instrumentação computadorizada. Nos casos em que uma dada forma de onda está cheia de ruído, onde uma média necessita de ser extraída de um sinal periódico, ou quando uma linha de base lentamente à deriva necessita de ser eliminada a partir de um sinal de frequência mais elevada, um filtro de média móvel pode ser aplicado para atingir o desejado resultado. O algoritmo de média móvel do Advanced CODAS oferece este tipo de desempenho de filtragem de forma de onda. Advanced CODAS é um pacote de software de análise que opera em arquivos de dados de forma de onda existentes criados pela primeira geração de pacotes de aquisição de dados WinDaq ou de segunda geração do WinDaq. Além do algoritmo de média móvel, o Advanced CODAS também inclui um utilitário de geração de relatórios e rotinas de software para integração de formas de onda, diferenciação, captação de pico e vale, rectificação e operações aritméticas. Teoria do Filtro de Movimentação Média O algoritmo de média móvel DATAQ Instruments permite uma grande flexibilidade nas aplicações de filtragem de formas de onda. Ele pode ser usado como um filtro passa-baixa para atenuar o ruído inerente em muitos tipos de formas de onda, ou como um filtro passa-alta para eliminar uma linha de base derivada de um sinal de freqüência mais alta. O procedimento usado pelo algoritmo para determinar a quantidade de filtragem envolve o uso de um fator de suavização. Este fator de suavização, controlado por você através do software, pode ser aumentado ou diminuído para especificar o número de pontos de dados de forma de onda real ou amostras que a média móvel se espalhará. Qualquer forma de onda periódica pode ser pensada como uma seqüência longa ou coleção de pontos de dados. O algoritmo realiza uma média móvel tomando dois ou mais desses pontos de dados da forma de onda adquirida, somando-os, dividindo sua soma pelo número total de pontos de dados adicionados, substituindo o primeiro ponto de dados da forma de onda pela média apenas calculada e Repetindo as etapas com o segundo, terceiro e assim por diante pontos de dados até o final dos dados é alcançado. O resultado é uma segunda forma de onda gerada, constituída pelos dados médios e com o mesmo número de pontos que a forma de onda original. Figura 1 8212 Qualquer forma de onda periódica pode ser considerada como uma seqüência longa ou coleção de pontos de dados. Na ilustração acima, pontos de dados de forma de onda consecutivos são representados por quotyquot para ilustrar como a média móvel é calculada. Neste caso, um fator de suavização de três foi aplicado, o que significa que três pontos de dados consecutivos da forma de onda original são adicionados, sua soma dividida por três, e então este quociente é plotado como o primeiro ponto de dados de uma forma de onda gerada. O processo se repete com o segundo, terceiro e assim por diante pontos de dados da forma de onda original até o final dos dados é atingido. Uma técnica de quotfeatheringquot especial faz a média dos pontos de dados iniciais e finais da forma de onda original para garantir que a forma de onda gerada contenha o mesmo número de pontos de dados que o original. A Figura 1 ilustra como o algoritmo de média móvel é aplicado a pontos de dados de forma de onda (que são representados por y). A ilustração apresenta um fator de suavização de 3, o que significa que o valor médio (representado por a) será calculado sobre 3 valores de dados de forma de onda consecutivos. Observe a sobreposição que existe nos cálculos da média móvel. É essa técnica de sobreposição, juntamente com um tratamento especial de ponto inicial e final que gera o mesmo número de pontos de dados na forma de onda média como existia no original. A forma como o algoritmo calcula uma média móvel merece um olhar mais atento e pode ser ilustrado com um exemplo. Digamos que temos sido em uma dieta de duas semanas e queremos calcular o nosso peso médio nos últimos 7 dias. Nós somamos nosso peso no dia 7 com nosso peso nos dias 8, 9, 10, 11, 12 e 13 e depois multiplicamos por 1/7. Para formalizar o processo, isto pode ser expresso como: a (7) 1/7 (y (7) y (8) y (9) y (13)) Esta equação pode ser mais generalizada. A média móvel de uma forma de onda pode ser calculada por: Onde: um valor médio n posição de ponto de dados fator de suavização y valor de ponto de dados real Figura 2 8212 A forma de onda de saída da célula de carga mostrada original e não filtrada no canal superior e como um ponto 11 Movendo a forma de onda média no canal inferior. O ruído que aparece na forma de onda original foi devido às intensas vibrações criadas pela prensa durante a operação de embalagem. A chave para esta flexibilidade de algoritmos é a sua ampla gama de fatores de suavização selecionáveis ​​(de 2 - 1.000). O factor de suavização determina quantos pontos de dados ou amostras reais serão calculados. A especificação de qualquer fator de suavização positivo simula um filtro passa-baixa enquanto especifica um fator de suavização negativo simula um filtro passa-alto. Dado o valor absoluto do fator de suavização, valores maiores aplicam maiores restrições de suavização na forma de onda resultante e, inversamente, valores menores aplicam menos suavização. Com a aplicação do fator de suavização apropriado, o algoritmo também pode ser usado para extrair o valor médio de uma dada forma de onda periódica. Um fator de alisamento positivo mais alto é tipicamente aplicado para gerar valores de forma de onda média. Aplicando o Algoritmo de Média Móvel Uma característica saliente do algoritmo de média móvel é que ele pode ser aplicado muitas vezes à mesma forma de onda se necessário para obter o resultado de filtragem desejado. A filtragem de forma de onda é um exercício muito subjetivo. O que pode ser uma forma de onda devidamente filtrada para um usuário pode ser inaceitavelmente ruidoso para outro. Só você pode avaliar se o número de pontos médios selecionados foi muito alto, muito baixo ou apenas correto. A flexibilidade do algoritmo permite ajustar o fator de suavização e fazer outra passagem através do algoritmo quando resultados satisfatórios não são alcançados com a tentativa inicial. A aplicação e as capacidades do algoritmo de média móvel podem ser melhor ilustradas pelos exemplos seguintes. Figura 3 8212 A forma de onda ECG mostrada original e não filtrada no canal superior e como uma forma de onda média movimentada de 97 pontos no canal inferior. Observe a ausência de deriva de linha de base no canal inferior. Ambas as formas de onda são mostradas em uma condição comprimida para fins de apresentação. Uma Aplicação de Redução de Ruído Nos casos em que uma dada forma de onda está cheia de ruído, o filtro de média móvel pode ser aplicado para suprimir o ruído e produzir uma imagem mais nítida da forma de onda. Por exemplo, um cliente CODAS avançado estava usando uma prensa e uma célula de carga em uma operação de empacotamento. O seu produto era para ser comprimido até um nível predeterminado (monitorizado pela célula de carga) para reduzir o tamanho da embalagem necessária para conter o produto. Por razões de controle de qualidade, eles decidiram monitorar a operação da prensa com instrumentação. Um problema inesperado apareceu quando começaram a ver a saída de células de carga em tempo real. Uma vez que a máquina de prensa vibrou consideravelmente durante a operação, a forma de onda de saída das células de carga era difícil de discernir porque continha uma grande quantidade de ruído devido à vibração como mostrado no canal superior da Figura 2. Este ruído foi eliminado gerando um canal com média móvel de 11 pontos como mostrado no canal inferior da Figura 2. O resultado foi uma imagem muito mais clara da saída das células de carga. Uma aplicação para eliminar a deriva da linha de base Nos casos em que uma linha de base lentamente derivada precisa ser removida de um sinal de freqüência mais alta, o filtro de média móvel pode ser aplicado para eliminar a linha de base da derivação. Por exemplo, uma forma de onda ECG exibe tipicamente algum grau de desvio de linha de base tal como pode ser visto no canal superior da Figura 3. Esta deriva de linha de base pode ser eliminada sem alterar ou perturbar as características da forma de onda como mostrado no canal inferior da Figura 3. Isto é conseguido aplicando um factor de suavização de valor negativo apropriado durante o cálculo da média móvel. O fator de suavização apropriado é determinado dividindo um período de forma de onda (em segundos) pelo intervalo de amostra de canais. O intervalo de amostra de canais é simplesmente o recíproco da taxa de amostragem de canais e é exibido convenientemente no menu de utilitário de média móvel. O período de forma de onda é facilmente determinado a partir da tela de exibição, posicionando o cursor em um ponto conveniente na forma de onda, definindo um marcador de tempo e, em seguida, movendo o cursor um ciclo completo longe do marcador de tempo exibido. A diferença de tempo entre cursor e marcador de tempo é um período de forma de onda e é exibido na parte inferior da tela em segundos. Em nosso exemplo de ECG, a forma de onda possuía um intervalo de amostra de canal de 0,004 segundos (obtido a partir do menu de utilidade de média móvel) e um período de forma de onda foi medido para espaçar 0,388 segundos. Dividindo o período de forma de onda pelo intervalo de amostra de canais nos deu um fator de suavização de 97. Como é a deriva de linha de base que estamos interessados ​​em eliminar, aplicamos um fator de suavização negativo (-97) ao algoritmo de média móvel. Isto, com efeito, subtraiu o resultado médio móvel do sinal original da forma de onda, que eliminou a deriva da linha de base sem alterar a informação da forma de onda. Quaisquer que sejam as aplicações, a razão universal para a aplicação de um filtro de média móvel é quotsmooth outquot as aberrações altas e baixas e revelam um valor de forma de onda intermediário mais representativo. Ao fazer isso, o software não deve comprometer outros recursos da forma de onda original no processo de geração de uma forma de onda média movimentada. Por exemplo, o software deve ajustar automaticamente as informações de calibração associadas ao arquivo de dados original, de modo que a forma de onda média móvel esteja nas unidades de engenharia apropriadas quando geradas. Todas as leituras nas figuras foram tiradas usando WinDaq Data Acquisition software algoritmo para zero-latência exponencial de média móvel Última modificação: 2017-08-13 Eu tenho tentado implementar um corte de baixa freqüência em c que essencialmente tem um fluxo de números e suaviza o (Filtrando o movimento de alta freqüência / jitter), no entanto, é importante que os números ponderados dianteiros são considerados imediatamente como os dados é tempo crítico (é para controlar uma base de simulação de movimento usando a saída de um pouco de software de jogo). Eu tenho um algoritmo de média móvel ponderada de trabalho, mas poderia fazer com algo um pouco mais responsivo no front end, e eu achei isso: - O pseudo-código lá é o seguinte: Entradas: Preço (NumericSeries), Period (NumericSimple) Variáveis: (0), lag (0) se CurrentBar lt 1 então começar ZLEMA Fator de preço 2 / (Period1) lag (Period-1) / 2 end else begin Fator ZLEMA (2Price-Pricelag) (1-factor) ZLEMA1 end Ive translated Ele em C e meu código é o seguinte: No entanto, ele doesnt parecem se comportar bastante como Id esperar. Parece estar quase lá, mas às vezes eu recebo um valor ligeiramente menor do que todos os itens na fila (quando eles são todos mais elevados). Minha fila e o número de itens nele são passados ​​como parâmetros, com o mais recente sendo na frente em todos os momentos, também eu passar um contador de incremento começando em 0 como exigido pela função. Eu não tenho certeza Ive interpretou o significado de ZLEMA1 corretamente como seu não claro em seu pseudocódigo, então Ive assumiu isso para ser as últimas chamadas zlema e também Im assumindo preço realmente significa Price0. Talvez eu tenha entendido isso errado Eu deveria estar copiando os valores zlema reais calculados de volta à minha fila original antes da próxima chamada Eu não mudo a fila original em todos os outros apenas mudando todos os valores um para o fim e inserindo o mais recente no início . O código que eu uso para fazer isso é: Seria extremamente grato se alguém com uma melhor compreensão da matemática poderia agradar sanidade verificar isso para mim para ver se eu tenho algo ligeiramente errado Obrigado com antecedência se você pode ajudar Em primeiro lugar, graças a todos por Sua entrada, muito apreciada Isso faz sentido eu acho, então eu suponho que então o melhor que eu posso esperar é simplesmente uma média móvel exponencial, aceitando haverá um pouco de atraso, mas isso será minimizado pela ponderação mais pesada frente do que dado em tipcial ponderada Eu tenho esse algoritmo também, mas um problema semelhante em que os valores não parecem muito corretos (a menos que esta seja a natureza da fórmula). Por exemplo, digamos que minha matriz contém 16 valores, todos os 0.4775 - a saída é 0.4983, mas Id esperam que seja 0.4775 Isso parece certo para você. / Média móvel exponencial. / Float ema (float vals, int numVals, int currentSample) estático float factor 0 static float lastema 0 float ema se (currentSample lt 1) ema vals0 factor 2.0 / ((float) numVals) 1.0) else ema (factor vals0) (1,0 - factor)) lastema ema retorno ema Inversamente, às vezes a saída é menor do que cada uma das entradas, mesmo se todos são mais elevados. É chamado da mesma forma que zlema (.) Acima, com um contador de incremento. A fórmula e o pseudocódigo para este estão aqui: - autotradingstrategy. wordpress / 2009/11/30 / expo nential-mo ving-avera ge / Agradecemos novamente, desculpas por meu mal-entendido de alguns dos princípios :( Atenciosamente, Chris J As Para o código que eu postei, você está certo sobre a situação do tamanho da matriz. Isso deve ser facilmente fixado. Como para as suas perguntas: 1) A constante do filtro representa um corte de freqüência. Eu usei um Digital Signal Processing (DSP) para esta técnica. En. wikipedia. org/wi ki / Low-pas sfilter é uma explicação simples. Você deseja a seção Discrete-Time Realization. No meu caso, o A é o RC-Constant que eles falam. Assim, a freqüência de corte é acima de 1 / (2piA). Se você não tem uma compreensão da teoria de domínio de freqüência, isso pode ficar complicado. No seu caso, Quanto mais alto você faz A, menor a freqüência que este filtro permitirá, o que significa que vai suavizar a curva mais e mais. Quanto mais baixo você fizer, mais ruído é permitido no sistema. Lembre-se A deve ser maior ou igual a 1 para ser eficaz. Eu reattached o XLS outra vez, esta vez sem os números mudando do rand (). Ajustar a constante A e ver como ele quotsmoothsquot (ou filtros) as variações de alta freqüência. 2) O último ponto da matriz de entrada tem o valor mais recente. 3) O mesmo é verdadeiro para a matriz de saída. O último é o valor mais recente. 5) O NUMVALS é arbitrário. Você pode adicionar continuamente para a matriz de entrada e saída quantas vezes você gosta e não afetaria o filtro. Em particular, usei 49 pontos. Mas eu posso apagar facilmente os últimos 20 e as primeiras 29 saídas permanecerão as mesmas. A função não é baseada em quantos pontos estão sendo usados. Gostaria de mencionar que desenvolvi esta função para uma conversão única. Se você quisesse fazer uma conversão para o valor seguinte na mosca você poderia tentar algo mais simples (como unido). Novamente Im rusty em c. Espero que isto esteja certo. A única coisa que você precisaria fornecer é a constante de entrada e filtro. Avise-me se isso ajudar.

Comments

Popular Posts